Additions and Corrections

Total Synthesis of Antitumor Agent AT-125, ($\alpha \boldsymbol{S}, 5 S$)- α-Amino-3-chloro-4,5-dihydro-5-isoxazoleacetic Acid [J. Am. Chem. Soc. 1981, 103, 942-943]. Jack E. Baldwin,* Lawrence I. Kruse, and Jin-Kun Cha.

Page 942, second column, 19 lines down: The following sentence is in error-"Coupling of dehydroglutamic acid 10 (mp 110-112 ${ }^{\circ} \mathrm{C}$) with hydroxylamine 13 (via the N -hydroxysuccinimide ester), followed by removal (anhydrous KF in EtOH) of the substituted silyl group gave the crystalline hydroxamic acid $11^{88}\left(\mathrm{R}^{4}=\mathrm{PNB}\right.$, $\mathrm{R}^{5}=\mathrm{NB}$), mp $147-148^{\circ} \mathrm{C}(50-60 \%$ from 10$)$, which was quantitatively cyclized with acqueous NaHCO_{3} to a $1: 1$ mixture of erythro- and threo-12 ($\mathrm{R}^{4}=\mathrm{PNB}, \mathrm{R}^{5}=\mathrm{Nb}$)".

The compounds referred to here should have $\mathrm{R}^{4}=\mathrm{PMB}, \mathrm{R}^{5}$ $=\mathrm{NB}$, where $\mathrm{PMB}=p$-methoxybenzyl.

Pentamethylcyclopentadienyl-Substituted Phosphorus and Arsenic Cations: Evidence for Multihapto Bonding between Group 5A Elements and Carbocyclic Ligands [J. Am. Chem. Soc. 1981, 103, 5572]. S. G. Baxter, A. H. Cowley,* and S. K. Mehrotra. Page 5572: The $200-\mathrm{MHz}^{1} \mathrm{H}$ NMR data for compound 1 at $-40^{\circ} \mathrm{C}$ should be assigned as follows:
$\mathrm{Me}_{\mathrm{a}}\left(\mathrm{d}, 3 \mathrm{H}, \delta 1.37, J_{\mathrm{PCCH}_{\mathrm{a}}}=6.65 \mathrm{~Hz}\right), \mathrm{Me}_{\mathrm{b}, \mathrm{b}^{\prime}}(\mathrm{s}, 3 \mathrm{H}, \delta 1.76$; $\mathrm{s}, 3 \mathrm{H}, \delta 1.79), \mathrm{Me}_{\mathrm{c}, \mathrm{c}^{\prime}}(\mathrm{s}, 6 \mathrm{H}, \delta 1.83)$.

These assignments are based on ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ double-resonance experiments.

Antimicrobial Metabolites of the Sponge Reniera sp. [J. Am. Chem. Soc. 1982, 104, 265]. James M. Frincke and D. John Faulkner.*

Page 265: The stereochemistry of the saframycins (4-6) was drawn incorrectly. The correct structure is shown here.

Page 267, right column, line 4: This statement is incorrect and should be corrected to read-The ring system of renieramycin A (11) was identical with that of the saframycins (4-6) and the relative stereochemistry differs only at the point of attachment of the side chain.

Studies of Hydrogen-Bonded $\mathbf{5}^{\prime}$-Guanosine Monophosphate SelfAssociates Using Low-Frequency Raman Scattering [J. Am. Chem. Soc. 1982, 104, 1991-1995]. O. Faurskov Nielsen,* P.-A. Lund, and Steffen B. Petersen.

Page 1991, line 2 in the abstract: The phrase "in the gel state" should be corrected to "in aqueous solution and of the sodium salt in the gel state".

Page 1992, right column, lines 4-6: These lines should read--"...transparencies were too low. Gels of the potassium salt could not be prepared because precipitation occurred at temperatures above ca. $50^{\circ} \mathrm{C}^{\prime}$.

Reactions of Bi(cyclophosphazenes) with Sodium Alkoxides or Aryl Oxides [J. Am. Chem. Soc. 1982, 104, 2482]. Harry R. Allcock,* Mark S. Connolly, and Paul J. Harris.

Page 2483: The organobi(cyclophosphazenes) (6) in Scheme I should be labeled

$$
\begin{aligned}
6 \mathrm{a}, \mathrm{R} & =\mathrm{CH}_{3} ; \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5} \\
\mathrm{~b}, \mathrm{R} & =\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}
\end{aligned}
$$

The Use of "Enantiopolar" Directions in Centrosymmetric Crystals for Direct Assignment of Absolute Configuration of Chiral Molecules: Application of the System Serine/Threonine [J. Am. Chem. Soc. 1982, 104, 2075]. L. Addadi,* Z. Berkovitch-Yellin,* I. Weissbuch,* M. Lahav,* L. Leiserowitz,* and S. WeinSTEIN.*

Page 2075, line 12 from the bottom in the second column: The following should be added to this line-We specify these directions which are polar with respect to each enantiomer as "enantiopolar".

End-to-End Cyclization of Hydrocarbon Chains. Photochemical and Computer Simulation Studies [J. Am. Chem. Soc. 1981, 103, 4941-4943]. Andrew Mar, Simon Fraser, and Mitchell A. Winnik.*

Page 4943, final paragraph, line 6: The sentence beginning on this line and continuing on the following line should read-The $k_{\mathrm{q}}^{(2)}$ value of $6.2 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for this reaction is 2000 times smaller than that for a diffusion controlled reaction. ..

